Determining the automorphism group of the linear ordering polytope

نویسنده

  • Samuel Fiorini
چکیده

In this paper we explore the combinatorial automorphism group of the linear ordering polytope P n LO for each n > 1. We establish that this group is isomorphic to Z 2 Sym(n + 1) if n > 2 (and to Z 2 if n = 2). Doing so, we provide a simple and uniied interpretation of all the automorphisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polytopes with groups of type PGL2(q)

There exists just one regular polytope of rank larger than 3 whose full automorphism group is a projective general linear group PGL2(q), for some prime-power q. This polytope is the 4-simplex and the corresponding group is PGL2(5) ∼= S5.

متن کامل

1-Designs from the group $PSL_{2}(59)$ and their automorphism groups

In this paper, we consider the projective special linear group $PSL_2(59)$ and construct some 1-designs by applying the Key-Moori method on $PSL_2(59)$. Moreover, we obtain parameters of these designs and their automorphism groups. It is shown that $PSL_2(59)$ and $PSL_2(59):2$ appear as the automorphism group of the constructed designs.

متن کامل

On locally spherical polytopes of type {5, 3, 5}

There are only finitely many locally projective regular polytopes of type {5, 3, 5}. They are covered by a locally spherical polytope whose automorphism group is J1 × J1 × L2(19), where J1 is the first Janko group, of order 175560, and L2(19) is the projective special linear group of order 3420. This polytope is minimal, in the sense that any other polytope that covers all locally projective po...

متن کامل

POLYTOPES OF LARGE RANK FOR PSLp4, Fqq

This paper examines abstract regular polytopes whose automorphism group is the projective special linear group PSLp4,Fqq. For q odd we show that polytopes of rank 4 exist by explicitly constructing PSLp4,Fqq as a string C-group of that rank. On the other hand, we show that no abstract regular polytope exists whose group of automorphisms is PSLp4,F2k q.

متن کامل

Groups of Ree type in characteristic 3 acting on polytopes

Every Ree group R(q), with q 6= 3 an odd power of 3, is the automorphism group of an abstract regular polytope, and any such polytope is necessarily a regular polyhedron (a map on a surface). However, an almost simple group G with R(q) < G ≤ Aut(R(q)) is not a C-group and therefore not the automorphism group of an abstract regular polytope of any rank.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 112  شماره 

صفحات  -

تاریخ انتشار 2001